Biophysics for Better Living 2.0

In my last blog post, I talked about the power and potential for biophysics engines to contribute to clinical care and ragged on my own ability to play video games. The short version of it, if you don’t have time to circle back: If you’re going to make a digital twin of somebody, base it on a system of differential equations that captures how the physics of the human body work. Also, I’m terrible at video games.

I talked in that blog post about how you can use a biophysics engine—a.k.a. known properties of how the body works, codified into equations— to estimate things that are hard to measure because they’re hard to reach. Things like the firing rates in your ventral and dorsal suprachiasmatic nucleus (SCN), which are tucked pretty deeply inside your brain. You’re not going to be able to easily peek and see what the SCN is up to (at least not right now, in 2022), but you can figure out what your SCN is likely up to passing the same inputs your real SCN got into a model of the SCN.

Woke up really early and got a blast of light? That probably sped up your clock. Stayed up late and kept the lights on overhead? That probably slowed your clock down. Where did your clock wind up at the end of it all? That’s a question that hinges on the details of when, how long, and how bright your light exposures were. In other words, it’s a question for the mathematical model.

But there are other questions you can ask a model, beyond “where am I now?” You can ask “what if?” What if I were to stay up the entire night in bright light? What if I dimmed the lights at 3:15 pm? How would these changes affect the state of my internal clock? And how would that changed state affect downstream outputs, like the timing of my peak fatigue or my peak performance?

When we talk about what we do at Arcascope, we say we do circadian tracking and circadian recommendations. The tracking is using a biophysics model to answer the question “where is your circadian clock right now?” The recommendations come from repeatedly asking the model “what would happen if you did (insert series of behaviors here)?” Asking a lot of questions gets you a lot of answers, which you can then pick from based on which ones best meet your goals, whether that’s sleeping more, adjusting faster, or being maximally alert at a specific time.

It’s all still biophysics models, but in one use-case, we’re putting them to work to capture reality, while in the other, we’re trying to capture a whole swath of possible futures. A list of potential realities to choose from as you scope out the rest of your week. Better living by picking the best answers to “what if?”— I think that’s pretty neat. And it keeps me up at night thinking—what if we could do this for other systems, besides sleep and wake, too?

Interested in beta testing our app? Send us an email!